
1 | P a g e

Gradient Descent Tutorial

Table of Contents
1 Introduction to Gradient Descent ... 2

1.1 Analogy for Gradient Descent ... 2

1.2 Description .. 2

1.3 Challenges in Executing Gradient Descent: When does it fail? .. 3

2 Details of Traditional Gradient Descent .. 3

2.1 Cost Function .. 4

2.2 How to Calculate a Gradient? ... 5

2.3 Conventional/Traditional (Batch) Gradient Descent .. 6

2.3 Stochastic Gradient Descent (SGD) ... 9

2.4 Mini-batch Gradient Descent .. 9

2.5 Challenges ... 10

3 Variants of Gradient Descent .. 10

3.1 Gradient Descent with Momentum .. 10

3.2 Nesterov Accelerated Gradient (NAG) .. 11

3.3 ADAGRAD .. 11

3.4 ADADELTA ... 12

3.5 ADAM .. 13

Bibliography .. 13

2 | P a g e

1 Introduction to Gradient Descent
Optimization (maximizing or minimizing a particular function) is a common class of problems in many

analytic paths of life (computer science, engineering, economics, business,…). Gradient descent is an

extremely popular approach (algorithm) to optimization. Inexplicably, it is not necessarily taught in

undergraduate CS and engineering programs.

So before I explain the theory and some specific applications of gradient descent, I want to present an

analogy that should provide an intuitive understanding of how it behaves (by the way, this is a classic

analogy that is commonly offered).

1.1 Analogy for Gradient Descent
Suppose you are the top of a mountain, and you have to reach the lowest point in the mountain range

(the valley) in ideally the quickest amount of time. However, here’s the catch, there is heavy fog limiting

visibility.

What strategy could you take to get down the mountain as quickly as possible?

Without seeing the entire mountain and having all the paths mapped out, you can’t be certain that the

path you would take is optimal. However, if at each step, you use the information available to choose

your next trajectory, you might come up with a reasonably good path (maybe the optimal path, or

maybe one that arrives at the valley in near optimal time).

So how do you decide which direction to move at each step? Well, at each step you could choose to

move in the direction of quickest descent (ie. always move in the direction of the steepest slope).

This sounds easy, right?

Let’s add another measure of difficulty… What if it isn’t entirely obvious which path (at any given point)

is the quickest/steepest slope? Let’s say for argument purposes, the quickest slope (at any given point)

could only be determined by a special gauge. Unfortunately, that gauge takes time to operate, and each

usage introduces another delay in arriving to the valley. It would make sense to minimize the use of the

instrument. This presents a difficulty in choosing the frequency at which you should measure the

steepness of the mountain.

This is analogous to obtaining a data set and attempting to determine the quickest path to the minima

(ideally the global minima). At each iteration (like the steps down the mountain), local information can

be used to find the local minima via calculating the gradient (ie. differentiation) (much like using the

gauge to calculate the slope). The amount of time between measurement intervals on the gauge is the

learning rate of the algorithm.

1.2 Description
So what exactly is gradient descent (more formally)? It’s an iterative optimization algorithm to find a

local minimum of a function. Each iteration is a small step proportional to the negative of the gradient

of the function at the current point.

It is based on the observation that a multivariate function 𝐹(𝑥) defined and differentiable in a

neighborhood of point 𝑎 decreases fastest in the direction of the negative gradient of 𝐹 at 𝑎 that is to

say −∇𝐹(𝑎).

3 | P a g e

If 𝑎𝑛+1 = 𝑎𝑛 − 𝛾 ∇𝐹(𝑎𝑛) for 𝛾 small enough, then 𝐹(𝑎𝑛) ≥ 𝐹(𝑎𝑛+1). That is saying that if we move in

the direction of the negative gradient, then the subsequent step will be less than or equal to the current

step (ie. moving downhill or level in our original analogy).

Thus the approach starts with an initial guess 𝑥0 for a local minimum of F, and consider the sequence

𝑥0, 𝑥1, 𝑥2, … such that

𝑥𝑛+1 = 𝑥𝑛 − 𝛾𝑛∇𝐹(𝑥𝑛)

We have 𝐹(𝑥0) ≥ 𝐹(𝑥1) ≥ ⋯ ≥ 𝐹(𝑥𝑛) ≥ 𝐹(𝑥𝑛+1). It should be noted that 𝛾 is allowed to vary over

iterations.

The sequence of 𝑥𝑛 should converge to the local minimum. (When F is convex, all local minima are also

global).

1.3 Challenges in Executing Gradient Descent: When does it fail?
 An ideal optimization problem would be strongly convex (as in the illustration below). The blue

dot reflects the global minima (the absolute lowest point in our data set). We aim to find the

global minima.

 Now consider a non-convex data sets. In these instance, the gradient descent algorithm will fail

or return an incorrect solution. In the illustration, we can see that the gradient descent from the

given starting point will yield a local minima, which is the incorrect solution.

 Saddle points also present a difficulty. A saddle point is a point where the gradient becomes

zero, but it is not an extremes (local minima or maxima points).

2 Details of Traditional Gradient Descent
There many variants of gradient descent algorithms. We can foremost categorize them based of two

criteria: data integration and differentiation technique. That is to say, some approaches (full batch) use

the entire data at once, while others (stochastic) sample while computing the gradient. Likewise, some

approaches use first order differentiation, while others use second order differentiation.

4 | P a g e

2.1 Cost Function
Up this point we really haven’t discussed what we are trying to optimize or minimize. Generally, the

optimization is applied to a cost function. So what is this cost function?

In a business/economics model, this cost function would be something like a supply/demand,

price/demand, or profit model. We would be aiming to optimize something like sales or profit, or

minimize costs.

In computing, this cost model can be less intuitive. While most contemporary implementations are

focused on data machine learning algorithms, the general objective of gradient descent is to optimize a

data fitting model. This has implications beyond machine learning, some non-linear (ie. deformable)

registration algorithms use gradient descent to fit one data set/model to another (in circumstances

where the relation between the two models is non-linear).

EXAMPLE 1 PART A

At this point, we will take a brief detour to illustrate one such usage. Suppose you were given price data

from a local housing market, and we wanted to predict the price a new house on the market given its

size.

House size (sqft) 1400 1600 1700 1875 1100 1550 2350 2450 1425 1700

House Price (k$) 245 322 288 309 199 220 455 334 320 255

Now a very basic model would be to apply a linear model. A linear model is of the form 𝑦 = 𝑚𝑥 + 𝑏,

where the x variable is the size and the y variable is the price, the two coefficients are m and b, which

are the intercept and slope.

0

100

200

300

400

500

0 500 1000 1500 2000 2500 3000

p
ri

ce
 (

k$
)

size (sqft)

House Price

5 | P a g e

In the above chart, we get a linear model that says the price of a house 𝑃𝑟𝑖𝑐𝑒 = $65,000 + $1,330 ∗

𝑠𝑖𝑧𝑒. The difference between the predicted model and the actual data is our prediction error. So in this

case, (still sticking to a linear model), we are trying to find an m and b that minimize the error between

actual and predicted values.

So our model cost function in this case could be the Sum of Squared Errors (SSE)

𝑆𝑆𝐸 =
1

2
∑(𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)2

(note: the
1

2
 is introduced for mathematical convenience, and that the SSE is just one of many possible

metrics for error)

With this in mind, we can look at some of the most common gradient descent algorithms and their

implementation.

2.2 How to Calculate a Gradient?
The gradient of a scalar valued multivariate function 𝑓(𝑥, 𝑦, … .) is denoted by ∇𝑓, packages all the

partial derivative information into a vector

∇𝑓 =

[

𝜕𝑓

𝜕𝑥
𝜕𝑓

𝜕𝑦
⋮]

The physical meaning of the gradient is the direction the function 𝑓 increases or decreases most rapidly.

6 | P a g e

2.3 Conventional/Traditional (Batch) Gradient Descent
In its simplest form (sometimes informally stated as vanilla/conventional/traditional, but more properly

called “batch”), gradient descent works by taking small steps in the direction of the minima by taking

gradients of the cost function with respect to the parameter 𝜃 for the entire data set. This can be

expressed in equation form as

𝜃𝑖 = 𝜃𝑖−1 − 𝜂 ∙ ∇𝜃𝐽(𝜃𝑖−1)

Where 𝜃𝑖 is the ith iteration of the parameters, and 𝜂 is the learning rate (iteration step size).

Input: data, cost function, termination criteria, learning rate

Step 0: pre-process data (example: normalize)

Step 1: initialize parameters (arguments of cost function)

Step 2: calculate the gradient of the cost function and update the parameters to those that optimize
the cost function.

Step 3: use the new parameters to update the prediction and calculate the cost function

Step 4: repeat steps 2 and 3 until termination criteria is achieve

To elucidate how conventional gradient descent works, let’s continue our example, going step-by-step:

EXAMPLE 1 PART B

Step 0: Normalize the data

House size 0 0.2 0.2 0.3 0.4 0.4 0.4 0.6 0.9 1

House Price 0 0.2 0.5 0.1 0.5 0.2 0.3 0.4 1 0.5

Prediction 0.08 0.21 0.21 0.28 0.34 0.34 0.34 0.48 0.67 0.74

Prediction Error 0.08 0.01 0.29 0.18 0.16 0.14 0.04 0.08 0.33 0.24

This gives a total SSE of 1.54

y = 0.7048x + 0.0528
R² = 0.5889

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

7 | P a g e

Step 1: Initialize the parameters

So we have a cost function of

𝑆𝑆𝐸 =
1

2
∑(𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)2 =

1

2
∑(𝑌𝐴𝑐𝑡𝑢𝑎𝑙 − 𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

2
=

1

2
∑(𝑌𝐴𝑐𝑡 − (𝑚𝑥 + 𝑏))

2

Where 𝑌𝑎𝑐𝑡 is the data (constant), 𝑚 𝑎𝑛𝑑 𝑏 are the parameters, and 𝑥 is the sqft of the property.

So in this case we could initialize m = 0.7 and b = 0.05

Step 2: Calculate the gradient with respect to the parameters

𝜕𝑆𝑆𝐸

𝜕𝑚
= −(𝑌𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

𝜕𝑆𝑆𝐸

𝜕𝑏
= −(𝑌𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)𝑥

m b X Y 𝒀𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅 SSE
𝝏𝑺𝑺𝑬

𝝏𝒎

𝝏𝑺𝑺𝑬

𝝏𝒃

0.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00

 0.20 0.20 0.12 0.08 0.08 0.02

 0.20 0.50 0.12 0.38 0.38 0.08

 0.30 0.10 0.18 0.08 -0.08 -0.02

 0.40 0.50 0.24 0.26 0.26 0.10

 0.40 0.20 0.24 0.04 -0.04 -0.02

 0.40 0.30 0.24 0.06 0.06 0.02

 0.60 0.40 0.36 0.04 0.04 0.02

 0.90 1.00 0.54 0.46 0.46 0.41

 1.00 0.50 0.60 0.10 -0.10 -0.10

 total SSE 1.50 Sum 1.06 0.52

Step 3: Adjust the weights with the gradients to reach the optimal values where SSE is minimized

We need to update the random values of m,b so that we move in the direction of optimal m, b.

Update rules: 𝑚𝑛𝑒𝑤 = 𝑚 − 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 ∗ ∑
𝜕𝑆𝑆𝐸

𝜕𝑚

𝑏𝑛𝑒𝑤 = 𝑏 − 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 ∗ ∑
𝜕𝑆𝑆𝐸

𝜕𝑏

We would repeat the calculation in the tables using our new m and b, and recalculate the SSE

8 | P a g e

Step 4: We would repeat the calculations until a stop condition (such as the error being 0, or

approaching 0, or an iteration stop limit)

The last table would look something like this:

m b X Y 𝒀𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅 SSE
𝝏𝑺𝑺𝑬

𝝏𝒎

𝝏𝑺𝑺𝑬

𝝏𝒃

0.66 0.08 0.00 0.00 0.08 0.08 -0.08 0.00

 0.20 0.20 0.21 0.01 -0.01 0.00

 0.20 0.50 0.21 0.29 0.29 0.06

 0.30 0.10 0.28 0.18 -0.18 -0.05

 0.40 0.50 0.34 0.16 0.16 0.06

 0.40 0.20 0.34 0.14 -0.14 -0.06

 0.40 0.30 0.34 0.04 -0.04 -0.02

 0.60 0.40 0.48 0.08 -0.08 -0.05

 0.90 1.00 0.67 0.33 0.33 0.29

 1.00 0.50 0.74 0.24 -0.24 -0.24

 total SSE 1.54 Sum 0.00 0.00

Note: This data is a small sample set with simplistic models (clearly, the linear model isn’t a good fit).

Real data could be (almost certainly will be) multivariate.

In its simplest form, we can express gradient descent as:

Step 1: Initialize
initialize parameters (guess)

Step 2: Update
calculate cost function and update = gradient of parameters
update = learning rate x gradient of parameters

Step 3: Parameter Update Step
parameters(new) = parameter(old) – update
 = parameters old – learning rate x gradient of parameters

In pseudocode, this looks like

*** note: the for can be replaced by a while condition for equivalent effectiveness

for i = 0; i< max_num_iterations; i++ (*note)

 grad_paramenters = evaluate_gradient(loss_function, data, parameters(i))

 parameters(i+1) = parameters(i) – learning_rate * grad_paramenters

9 | P a g e

Batch gradient is guaranteed to converge to a global minimum for convex functions and to a local

minimum for non-convex functions. As we need to calculate the gradients for the entire dataset to

perform just one update, batch gradient can be slow and is intractable for datasets that cannot be

manipulated in memory.

In the next section and chapter, we will consider some other variants (flavors) of gradient descent.

2.3 Stochastic Gradient Descent (SGD)

Stochastic gradient descent performs a parameter update for each training example 𝑥(𝑖) and label 𝑦(𝑖)

𝜃𝑖 = 𝜃𝑖−1 − 𝜂 ∙ ∇𝜃𝐽(𝜃𝑖−1; 𝑥
(𝑖); 𝑦(𝑖))

While batch gradient descent performs redundant computations for large datasets (as it recomputes the

gradient for similar examples, before each parameter update), stochastic gradient descent does not. It

performs one update at a time, and is therefore typically faster.

One shortcoming is that SGD will keep overshooting, however, if the learning rate is slowly decreased

SGD shoes the same behavior as batch gradient descent (and tends to converge to a minima).

In pseudocode, this looks like

2.4 Mini-batch Gradient Descent
Mini-batch gradient descent attempts to merge between the two previous approaches by performing an

update for every mini-batch of 𝑛 training examples:

𝜃𝑖 = 𝜃𝑖−1 − 𝜂 ∙ ∇𝜃𝐽(𝜃𝑖−1; 𝑥
(𝑖;𝑖+𝑛); 𝑦(𝑖;𝑖+𝑛))

This approach reduces the variance of the parameter updates, which can lead to more stable

convergence. Likewise, it makes it computationally feasible to efficiently compute the gradient using

matrix optimization libraries. In pseudocode, this looks like

for i = 0; i< max_num_iterations; i++ (*note)

 random_shuffle(data)

 for example in data

 grad_paramenters = evaluate_gradient(loss_function, data, parameters(i))

 parameters(i+1) = parameters(i) – learning_rate * grad_paramenters

for i = 0; i< max_num_iterations; i++ (*note)

 random_shuffle(data)

 for batch in batches(data, batch_size)

 grad_paramenters = evaluate_gradient(loss_function, data, parameters(i))

 parameters(i+1) = parameters(i) – learning_rate * grad_paramenters

10 | P a g e

2.5 Challenges
Conventional batch gradient descent presents some challenges, such as:

 Choosing a proper learning rate. Choosing a rate that is too small can lead to slow convergence,

while a rate too large can hinder convergence and cause the loss function to oscillate around the

minimum (or even diverge).

o One approach is to adjust the learning rate. This can be achieved by “scheduling”, which

is to adjust the rate based change in the objective function. In other words, as the

change in the objective function between iterations becomes less pronounce, the

learning rate is made “smaller”. These schedules, however have to be defined in

advance and are thus unable to adapt to a dataset’s characteristics.

o Another issue with the learning rate is that it applies to all parameters. If our

parameters have different rates of convergence, a learning rate suitable to one, may not

be for the others.

 If the function is non-convex, the gradient descent may be trapped in suboptimal local minima

or saddle points. Saddle points are usually surrounded by a plateau of the same objective

function values, which makes it difficult for standard gradient descent to “escape” as the

gradient is close to zero in all directions.

3 Variants of Gradient Descent
This section is a brief description of some alternate approaches to traditional gradient descent approach

discussed in the previous section. By no means is this an in-depth investigation, but rather a primer to

understand the approach and how it may impact your implementation.

3.1 Gradient Descent with Momentum
Stochastic gradient descent (SGD) can behave poorly in areas where the surface curves much more

steeply in one dimension than in another (termed “ravines). Under such circumstances, SGD will

oscillate slowing the progress to a global minima. By applying a momentum term, the convergence to

the global minima can be accelerate.

𝑣𝑖 = 𝛾𝑣𝑖−1 + 𝜂 ∙ ∇𝜃𝐽(𝜃𝑖−1)

𝜃𝑖 = 𝜃𝑖−1 − 𝑣𝑡

The momentum term increases for dimensions whose gradients point in the same directions and

reduces updates for dimensions whose gradients change directions. As a result, we gain faster

convergence and reduced oscillation. This behavior is analogous to rolling a ball downhill. In that it may

not take the optimal path at any given point, but will generally move quickly downhill.

3.2 Nesterov Accelerated Gradient (NAG)
Continuing the analogy of a ball rolling downhill. A ball rolling downhill following the slope may not be

satisfactory. Particularly, due to that approaches nature to overshoot. We would hope that it could

decelerate before the hill slopes up again.

Nesterov Accelerated Gradient (NAG) is a way to give out momentum term a degree of prescience or

foresight [3]. Knowing that the momentum term 𝛾𝑣𝑖−1 is used to move the parameters 𝜃𝑖, we can

11 | P a g e

obtain a rough idea of where our parameters are going to be in the subsequent step. Thus, we can look

ahead by calculating the gradient not with respect to the current parameters, but rather with respect to

those anticipated/approximate parameters (in our future position). We can express this as

𝑣𝑖 = 𝛾𝑣𝑖−1 + 𝜂 ∙ ∇𝜃𝐽(𝜃𝑖−1 − 𝛾𝑣𝑖−1)

𝜃𝑖 = 𝜃𝑖−1 − 𝑣𝑡

3.3 ADAGRAD
AdaGrad (Adaptive Gradient) is an approach that adapts the learning rate to the parameters, performing

larger updates for infrequent and smaller updates for frequent parameters [4]. It is suitable to sparse

data.

In previously discussed approaches, we performed an update for all parameters 𝜃𝑖 at once as every

parameter and all parameters used the same learning rate 𝜂. As ADAGRAD uses a different learning rate

for every parameter 𝜃𝑖 at every iteration (or time step) i, we first show ADAGRAD’s per parameter

update, which we then formulate as a vector. For simplicity, we set 𝑔𝑖,𝑘 to be the gradient of the object

function with respect to the parameter 𝜃𝑖𝑘
(where k is the kth parameter) at iteration/time step 𝑖 :

𝑔𝑖,𝑘 = ∇𝜃𝐽(𝜃𝑖)

The SGD update for every parameter 𝜃𝑖𝑘
at each iteration/time step 𝑖 then becomes:

𝜃𝑖+1,𝑘 = 𝜃𝑖,𝑘 − 𝜂 𝑔𝑖,𝑘

In its update rule, ADAGRAD modifies the general learning rate 𝜂 at each time step 𝑖 for every

parameter 𝜃𝑖+1,𝑘 based on the past gradients that have been computed for 𝜃𝑖+1,𝑘:

𝜃𝑖+1,𝑘 = 𝜃𝑖,𝑘 −
𝜂 𝑔𝑖,𝑘

√𝐺𝑖,𝑘 + 𝜀

𝐺𝑖 ∈ ℝ𝑑×𝑑 here is a diagonal matrix where each diagonal element is the sum of the squares of the

gradients with respect to 𝜃𝑘 up to interval/time-step 𝑖 while 𝜀 is a smoothing term that avoids division

by zero.

Adagrad’s primary advantage is that it eliminates the need to manually tune the learning rate. Its

primary weakness is the accumulation of the squared gradients in the denominator (since every added

term is positive, the accumulated sum keeps growing during training). This in turn causes the learning

rate to shrink and eventually become infinitesimally small, at which point the algorithm is no longer able

to acquire additional knowledge.

3.4 ADADELTA
Adadelta is an extension of Adagrad that seeks to reduce its aggressive, monotonically decreasing

learning rate (see shortcoming in previous paragraph) [5]. Instead of accumulating all past squared

gradients, Adadelta restricts the window of accumulated past gradients to some fixed size 𝑤.

Instead of inefficiently storing 𝑤 previous squared gradients, the sum of gradients is recursively defined

as a decaying average of all past squared gradients. The running average 𝐸[𝑔2]𝑖 at time step 𝑖 then

depends (as a fraction 𝛾 similarly to the Momentum term) only on the previous average and the current

gradient:

12 | P a g e

𝐸[𝑔2]𝑖 = 𝛾 𝐸[𝑔2]𝑖 + (1 − 𝛾)𝑔𝑖
2

For clarity, we now rewrite our vanilla SGD update in terms of the parameter update vector ∆𝜃𝑖:

∆𝜃𝑖 = −𝜂 𝑔𝑖,𝑘

𝜃𝑖+1 = 𝜃𝑖 + ∆𝜃𝑖

The parameter update vector of Adagrad that we derived previously thus takes the form:

∆𝜃𝑖 = −
𝜂

√𝐺𝑖,𝑘 + 𝜀
⊙ 𝑔𝑖

We now simply replace the diagonal matrix 𝐺𝑡 with the decaying average over past squared

gradients 𝐸[𝑔2]𝑖:

∆𝜃𝑖 = −
𝜂

√𝐸[𝑔2]𝑖 + 𝜀
𝑔𝑖

As the denominator is just the root mean squared (RMS) error criterion of the gradient, we can replace

it with the criterion short-hand:

∆𝜃𝑖 = −
𝜂

√𝑅𝑀𝑆[𝑔]𝑖
𝑔𝑖

The authors note that the units in this update (as well as in SGD, Momentum, or Adagrad) do not match,

i.e. the update should have the same hypothetical units as the parameter. To realize this, they first

define another exponentially decaying average, this time not of squared gradients but of squared

parameter updates:

𝐸[∆𝜃2]𝑖 = 𝛾 𝐸[∆𝜃2]𝑖−1 + (1 − 𝛾)∆𝜃2
𝑖
2

The root mean squared error of parameter updates is thus:

𝑅𝑀𝑆[∆𝜃]𝑖 = √𝐸[∆𝜃2]𝑖 + 𝜀

Since 𝑅𝑀𝑆[∆𝜃]𝑡 is unknown, we approximate it with the RMS of parameter updates until the previous

time step. Replacing the learning rate 𝜂 in the previous update rule with finally yields 𝑅𝑀𝑆[∆𝜃]𝑖−1 the

Adadelta update rule:

∆𝜃𝑖 = −
𝑅𝑀𝑆[∆𝜃]𝑖−1

𝑅𝑀𝑆[𝑔]𝑖
gi

𝜃𝑖+1 = 𝜃𝑖 + ∆𝜃𝑖

With Adadelta, we do not even need to set a default learning rate, as it has been eliminated from the

update rule.

13 | P a g e

3.5 ADAM
ADAM is one more adaptive technique which builds on adagrad and further reduces it downside [6]. In

other words, you can consider this as momentum + ADAGRAD. In addition to storing an exponentially

decaying average of past squared gradients 𝑣𝑖 like Adadelta, Adam also keeps an exponentially decaying

average of past gradients 𝑚𝑖, similar to momentum:

𝑚𝑖 = 𝛽1𝑚𝑖−1 + (1 − 𝛽1)𝑔𝑖

𝑣𝑖 = 𝛽2𝑣𝑖−1 + (1 − 𝛽2)𝑔𝑖
2

𝑚𝑖 𝑎𝑛𝑑 𝑣𝑖 are estimates of the first moment (the mean) and the second moment (the uncentered

variance) of the gradients respectively, hence the name of the method. As 𝑚𝑖 𝑎𝑛𝑑 𝑣𝑖 are initialized as

vectors of 0's, the authors of Adam observe that they are biased towards zero, especially during the

initial time steps, and especially when the decay rates are small.

They counteract these biases by computing bias-corrected first and second moment estimates:

𝑚𝑖̂ =
𝑚𝑖

1 − 𝛽1
𝑖

𝑣𝑖̂ =
𝑣𝑖

1 − 𝛽2
𝑖

which yields the Adam update rule:

𝜃𝑖+1 = 𝜃𝑖 −
𝜂

√𝑣𝑖̂ + 𝜀
𝑚𝑖̂

Bibliography

[1] http://ruder.io/optimizing-gradient-descent/

[2] https://www.analyticsvidhya.com/blog/2017/03/introduction-to-gradient-descent-algorithm-

along-its-variants/

[3] Nesterov, Y. (1983). A method for unconstrained convex minimization problem with the rate of

convergence o(1/k2). Doklady ANSSSR (translated as Soviet.Math.Docl.), vol. 269, pp. 543– 547.

[4] Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive Subgradient Methods for Online Learning and

Stochastic Optimization. Journal of Machine Learning Research, 12, 2121–2159. Retrieved from

http://jmlr.org/papers/v12/duchi11a.html

[5] Zeiler, M. D. (2012). ADADELTA: An Adaptive Learning Rate Method. Retrieved from

http://arxiv.org/abs/1212.5701

[6] Kingma, D. P., & Ba, J. L. (2015). Adam: a Method for Stochastic Optimization. International

Conference on Learning Representations, 1–13

http://ruder.io/optimizing-gradient-descent/
https://www.analyticsvidhya.com/blog/2017/03/introduction-to-gradient-descent-algorithm-along-its-variants/
https://www.analyticsvidhya.com/blog/2017/03/introduction-to-gradient-descent-algorithm-along-its-variants/

